A Parallel Planar Generalized Yee-Algorithm For the
Analysis of Microwave Circuit Devices

Sephen D. Gedney
Department of Electrical Engineering
University of Kentucky
Lexington, KY 40506-0046

and

Faiza Lansing
Spacecraft Telecommunications Equipment Section ¢
Jetpzrsggggonclkag%?)?ry 4 Covlanua Tastdato e
, it TOYaL: §{\§
it

Abstract. The planar generalized Yee (PGY) algorithm is an extension of the generalized Yee-
algorithm and the discrete surface integral (DSI) methods, which are based on explicit time-
marching solutions of Maxwell’s equations. Specifically, by exploiting the planar symmetries of
printed microwave circuit devices, great savings in both CPU time and memory can be achieved.
Since the PGY algorithm is an explicit method, it has a high degree of parallelism. To thisend, a
highly scalable parallel algorithm based on a spatial decomposition of the general unstructured
mesh is presented. Two spatial decompositions are compared, the recursive inertia partitioning
(RIP) agorithm and the Greedy algorithm. The Greedy agorithm provides optimal load balance,
whereas the RIP algorithm more effectively minimizes shared boundary interface lengths.
Through numerical example, it is demonstrated that the Greedy algorithm provides superior
speedups. It is also demonstrated that the parallel PGY algorithm is a highly scalable algorithm.

Thiswork was supported under JPL/NASA Contract 959534 with the University of Kentucky
Submitted 10 the International Journal on Numerical Modeling (Electronic Networks, Devices and Fields)

Parallel PGY-Algorithm, S. Gedney & F'. Lansing

1. Introduction

The gencralized Yce-algorithm[1, 2], and the Discrete Surface Integral (DSI) algorithm (3]
have proven to be highly robust and accurate techniques for the analysis of microwave circuit
devices. These methods arc explicit time-marching schemes derived from the discretization of
Ampere's and Faraday’s laws in their integral form (1-3]. 10 thisend, the vector fields are
projected onto the edges of a dual, staggered grid which is assumed to be unstructured and
irregular. Thisisin contrast to the traditional finite difference time-domain (FDTD) method [4]
which is based on regular and orthogonal grids, or the non-orthogonal FDTD method [5-81,
which is based on irregular structured grids. The advantage of using unstructured grids, /is that
highly complex geometries can be accurately modeled with the aide of automatic grid generation
techniques. Unfortunately, a disadvantage of generalized Yee and 1DSI algorithms is that the
numerical grid must be stored. Moreover, the sparse matrices associated with them must also be
stored {1, 2], greatly limiting, the size of the problem which can be solved.

The memory requirements of the generalized Yee-algorithm and the DSI algorithm can be
greatly relaxed by exploiting symmetries in the model. A large class of microwave circuits can
be said to have planar symmetry, which is recognized for three-dimensional geometries that can
be uniquely described by a projection onto a two-dimensional plane. It was shown in [9] that by
exploiting this symmetry, (he entire three-dimensional circuit geometry can then be described
uniquely by a two-dimensional grid. Subsequently, the grid used to analyze the three-
dimensional problem can be described by an unstructured two-dimensional grid in a transverse
plane and as a regular grid in the third-dimension. Thus only the two-dimensional grid need be
stored. Furthermore, it is shown below that the sparse update matrices of this planar generalized
Yee- (PGY) agorithm need only be constructed for the two-dimensional grid. This greatly
relaxes the memory requirements of the algorithm to the extent that it is actually as memory
efficient as the FDTD algorithm.

The PGY-algorithm is an efficient computational method, however, since it is based on a

volume discretization the computational demand can increase substantialy with the size of the

Parallel PGY-Algorithm, S Gedney & F. Lansing

problem geometry. For example, the number of floating point operations per time iteration will
increase as O(N), where N is the number of unknowns in the discrete volume. However, the
number of time iterations required to reach a steady-state will also increase as O(VN) (the
number of time iterations will be inversely proportional to the minimum edge length in the model
as well). The analysis of single component circuits can typically be modeled on conventional
workstations or sequential computers in reasonable amounts of time. On the other hand, the
analysis of multi-component circuits requires much greater resources.

It is becoming much more evident that distributed parallel computing is a highly cost effective
means of achieving supercomputing performance. With the rapid increase in computational
power of RISC microprocessors, as well as the increase in speeds of local area networks, highly
cost effective supercomputing can be achieved through loosely coupled distributed parallel
systems using message passing protocols such as PVYM (Parallel Virtual Machine). Tightly
coupled distributed memory multiprocessor computers, such as the 1 ntel Paragon, the Cray T3D,
the IBM SP2, or the Convex SPP1 000, will provide higher performance, principally due to the
fact of having faster dedicated networks interconnecting processors with greatly reduced latency
times. These architectures have already demonstrated the potential of 100 GFLOPS performance
for practical scientific applications.

The PGY-algorithm is extremely well suited for nigh performance distributed memory
computing. Since the method is explicit, the kernel of the algorithm consists of a series of
matrix-vector products. These operations are conveniently parallelized using a spatial
decomposition of the unstructured mesh. It is shown that by treating the matrix as a subassembly
of matrices, where each sub matrix is associated with each spatial subdomain, interprocessor
communication can be minimized, resulting in a highly scalable parallel algorithm. Furthermore,
due to the regularity of the grid along the vertical direction, vector/pipelining can be exploited to
further increase the floating point speed of the algorithm,

The focus of this paper is on the development of an efficient implementation of the PGY-

algorithm on high performance parallel computers. Section 11 presents the PGY-algorithm.

Parallel PGY-Algorithm, S. Gedney & F. Lansing

Section 111 discusses the parallelism inherent within the algorithm, and presents an efficient
parallel algorithm based on a spatial decomposition of the three-dimensional mesh. Section 1V
presents the inherent vectorism in the PGY-algorithm, and the advantages of exploiting the
vector/pipelining of RISC based parallel computers. Finally, some numerical examples are
presented in Section V, which illustrate the efficiency and the scalability of the parallel PGY-

agorithm.

11. ‘1ke Planar Generalized Yee-Algorithm
The planar generalized Yee-algorithm is based on a direct solution of the time-dependent
Maxwell’s equations in their integral form. The electric and magnetic field intensities are

initially normalized as
é=rE/n,
h=1i1n,

where 7o is the characteristic wave impedance in free space. Faraday's law and Ampere's law

(1)

arc then expressed in their integral form as

ié-d@z»é-{%ﬁu,ﬁ-@)
- 19 L
ih-dezggt-ge,e-dmnof_joe-ds (3)

where co is the free space velocity of light, ur and €r are the relative permeability and
permittivity, respectively, and ¢ is the absolute conductivity. The principle advantage of this
normalization is that the magnitudes of € and h will be of the same order, reducing rounding
error. Furthermore, it is much more convenient to work with the relative permittivity and
permeabilities rather than their absolute values.

Faraday's and Ampere's laws are expressed in a discrete form by mapping € and # into a
discrete three-dimensional space. The mapping consists of projecting the vector fields onto the
edges of adual grid, composed of two st aggered grids, referred to as the primary and secondary
grids. Each grid is a three-dimensional grid that is described as being regular along the vertical

direction (assumed to be the z-direction), and is unstructured in the horizontal direction.

Parallel PGY-Algorithm,S. Gedney & F. Lansing

Conceptually, this grid can be generated by extruding a two-dimensional unstructured grid in the
vertical direction, and segmenting it at discrete heights, as illustrated in Fig. 1. The secondary
grid is staggered within the primary grid such that its vertices lie at the centroids of the primary
grid cells, and the edges of the secondary grid connect the centroids by passing through the faces
of the primary grid.

The electric and magnetic fields are then decomposed into orthogonal components

"

= E‘ "‘ ZCZ,

=+ zh,. 4)

= 0N

Subsequently, the transverse electric and magnetic fields are mapped onto the horizontal edges of
the primary and secondary grids, respectively. Likewise, the vertical electric and magnetic fields
are mapped onto the vertical edges of the primary and secondary grids, respectively. The vector
fields are assumed to be constant along their respective. edge lengths, as well as over the dual
face through which they pass.

Based on the above discretization, Faraday’s and Ampére's laws are. then mapped into the
discrete space. The time derivative is then approximated using a central difference expression,

which is second-order accurate if the fields are staggered in time. This leadsto [9]

Ldr 1 Ny
}n-H k ::h" k _ (‘o - 7 opd= 5
i (k) = ;' (k) ARG > e, 2(1;)£,|_ (5)

n+-l— n+-l— 1 n-#l Ml
b (kA)= bl (k+5)— Bﬁe%-i[(e, 2(k + %—) ~e, 2(k+ E)sz 4(0,,. 2(k+1)—e, (k) I,
] i Z ; n ni)
(6)

D‘lg 1 € (k+~1-) o (k+-l-)n
e,nz(k+2:): A
- ¢ 2
[4]
\ D

< (7)
. 1

»_L E:h.'.'“(k'*l)zi 1 :

A: o 2 (e,n(h}) 0..(“5)7)0)

. 1
e, "tk + -
k)

o SN ST S O

[

Parallel PGY-Algorithm, S. Gedney & F. Lansing

"l] o, (i3, I
W e Tt i <L

At +)n ol 2¢, UH) dzf,
) o
I 1
h, (k) h,,_”(k))dz+h,’:”(k5—)/2,'_](k+—é)€£ﬂ
(.

where dr and by are the flux densities in the transverse plane, At is the time increment, nis the
time index, k is the index along z, Ap and Asarc the areas of the primary and secondary grid
faces, respectively, N, and N; are the number of edges bounding the i-th primary and the j-th
secondary grid faces, respectively, and the £; are the length vectors of the primary or secondary
grid edges. ‘I’he material parameters €r, Ur and ¢ are assumed to be piecewise homogeneous in
both the z-direction as well as in the transverse direction. At the. intcrface of two unlike medium,
the parameters are assigned an average value, as described in Appendix A of [11.

Based on (2) and (3), it is recognized that the flux densities updated in (6) and (8) are normal
to the faces. However, the corresponding field intensities on the dual edges passing through
these faces arc not necessarily normal to the faces. As a result, the flux densities must be
projected onto the edges before the dual fields can be updated. Since only one component of the
field is locally known, an auxiliary operator must be introduced to perform the projection. To
this end, the projection operators implemented in [1] are used to project the fields onto the dual
edge passing through the face.

let N,, be the normal area vector to a primary grid transverse face, and § be the unit vector
along the dual grid edge passing through the face (Fig. 2). Using (6) the magnetic flux densities
projected onto the normals of al the primary grid transverse faces are updated, Subsequently,
for each face, a general flux density vector b is introduced. From (6), 5-1\7,, is known at each
edge. In Fig. 2, the edge identified is bound by vertices 7 and 2, which is identified by the index
i =1,2.Each vertex is also shared by two additional edges which share a common cell. Let

represent one of these edges, where j = 1,2. The normal area vector to the j-th edge associated

with the i-th vertex is N, . Subsequently, we define a general flux density vector 5.-,,- to be the

6

Parallel PGY-Algorithm, S. Gedney & F. Lansing.

local estimate of the magnetic flux vector associated with the i-th vertex and the j-th edge, where

b, ; is computed by solving the two-dimensional system of equations

by Np=b* N
S ©)
b Ny=bN,

o

sy

where the right-hand-side is known from (6). Subsequently, introducing the weighting
coefficient w;; 2 '(NDXN,,_.>5he flux density projected onto the dual edge is expressed as

hog —imm T (lo)

The field updates are then computed using (6)-(10). However, it is realized that computing the
parameters for these equations requires a significant number of floating point operations, leading
to a highly inefficient algorithm. However, by employing standard finite-element type
techniques, the computational efficiency can be greatly enhanced by treating these linear

operators as sparse matrices. To this end, (6)-(10) can be expressed in reduced form as
7, =[], A) (1l

n41/2

(B L =B+ | (12)
gy -

[”‘M llk+l/2) ‘::[B‘n”]u 112 (13)

[E:H/?]“m : E:[E:Hn]ul/z + A‘= [H‘H]Ln/z (14)
n+l

[Dx’H 3/2]k — ‘B—TT[D‘MXH]k 4 ";i':[’::;1 (15)
T han

[EI'H 3/2]‘k — ‘;‘—:‘[D’M 3/2]" (16)

where the subscript k refers to the discrete height along the z-direction, D; and B, are the flux
densities, the D's are diagonal matrices, and the A's are sparse matrices. Note that these
matrices are only associated with the two-dimensional grid since they are the same for al values
of k (inhomogeneities in material parameters are. easily built into these expressions). As a result,

the additional memory required to store these matrices is nominal.

Parallel PGY-Algorithm, S. Gedney & F. Lansing__ —

process on a single processor of the computer is P. In fact, due to serialism, the speedup will
aways be less than P. Thus the principle objective in designing a parallel agorithm is to
minimize the amount of serialism in the parallel agorithm. Serialism can be defined as
computation that would be better done on a uniprocessor system than a parallel system. It also
includes additional computation that must be performed by the paralel algorithm, but is not
required by a sequential algorithm. Some examples of tasks that lead to serialism are: 1) load
imbalances, 2) interprocessor communication, 3) latency, 4) synchronization, and 5) redundant
computation. in a parallel system, the total computational time to complete a global task is equal
to the time required by the slowest processor to complete its local task. Therefore, it is important
to evenly distribute the work effort among al the processors, namely the work load must be
balanced. In contrast, load imbalances lead to processor idle time and reduce parallel efficiency.

Interprocessor communication, i.e.,, message passing, introduces additional effort that is
required by the parallel agorithm which is not performed by the sequential algorithm, and it
leads to the degradation of the parallel efficiency. The computational time required to perform
an interprocessor communication can be divided into two parts, 1) the time it takes to initiate the
communication, which is referred to as the latency time, and 2) the time/byte required to transmit
a data packet between two remote processors. In most tightly coupled distributed-memory
multiprocessor computers, the time required to transmit a byte of data is on the order of
nanoseconds. However, the latency time is typically on the order of tens of microseconds.
Therefore, it is much more profitable to send a small number of large data packets rather than a
large number of small data packets. Furthermore, since single floating point operations are
performed on the orders of nanoseconds, it is extremely important to maximize the ratio of the
time a processor spends performing floating point operations to the amount of time spent
performing interprocessor communication, Unfortunately, as the number of processors increases
for afixed problem size, thisratio inevitably decreases, leading to the degradation of the parallel

efficiency.

Parallel PGY-Algorithm, S. Gedney & F. Lansing . —

Synchronization can aso lead to serialismina paralel algorithm. This leads to processors
which are left idle while waiting for information from a remote processor. A good example of
thisis a recursive algorithm, where a process on my processor is dependent on data from another
processor, whereas, another processor is dependent on my data still to be processed, and so on.
Iiven though the work load may be balanced, the parallel efficiency can be extremely poor due to
the required synchronization.

Finally, redundant computation is computation done on a number of processors concurrently
that could have been done by a single processor. Often, if the time spent doing redundant
computation is small, it is cheaper in terms of overal CPU time to do it redundantly rather than
to have to perform an additional interprocessor communication. Again, the reason being that the
latency time to initiate the communication will be on the order of microseconds, compared to the
nanoseconds required to perform the floating-point operations. However, a substantial amount of
redundant computation can lead to degradation in parallel efficiency.

It is thus important to design a parallel algorithm which is load balanced, has a minimal
number of interprocessor communications, minimizcs the size of the data packets being
communicated, is asynchronous in operation, and minimizes the amount of redundant or serial
computation. To this end, the parallel PGY algorithm is based on a spatial decomposition of the
three-dimensional grid into contiguous, non-overlapping subdomains. The partitioning of the
two-dimensional unstructured mesh is being performed using one of twofﬁdifferem techniques:
1) The Recursive inertia Partitioning (RIP) algorithm (11}, which is a power of two algorithm
that isideal for hypercube computers, and 2) the Greedy algorithm |12}, which a non-power of
two algorithm providing a more general decomposition. Both algorithms are quite simple to
implement, and are computationally efficient even for large meshes. ‘I"he RIP algorithm has the
advantage that it minimizes the number of grid edges on shared boundaries, however, it typically
has 10 % load imbalances in the partition. The Greedy algorithm has the advantage that it
partitions the mesh in a manner that is ideally load balanced, however, the number of edges on

shared boundaries is typically greater than that yielded by the RIP agorithm. Furthermore, the

10

Parallel PGY-Algorithm, S Gedney & F. Lansing

Greedy algorithm can sometimes result in digoint sub domains [12]. Nevertheless, in Section V,
it is illustrated that the load balancing is more important than minimizing shared boundary
lengths, and the Greedy algorithm leads to improved parallel efficiencies. The spatial
decomposition along the third, regular dimension is done using a trivial partitioning scheme of
the regular grid.

Once the mesh is decomposed into subdomains, one subdomain is assigned to each processor.
The matrices in (11)-(16) are then expressed as a subassembly of matrices, where each sub
matrix represents the updates of the fields within each subdomain. subsequently, the matrix
vector products are sSimply expressed as

A Y A (18)
where P is the total number of processors.

This approach has a number of advantages, The spatial decomposition is done in a manner
such that each processor performs roughly the same number of floating point operations each
time iteration, leading to a balanced parallel algorithm. Secondly, only the local matrices and
field vectors need be stored on each processor. This algorithm maximizes the ratio of
computation to communication leading to a highly scalable algorithm. This can be seen by

further decomposing A as

= ==int Nt ==shared (19)

A=A + Aij
j=

where A; are the rows of A; associated with al field vectors inter-nal to the i-th processor’s

==shared .
subdomain, Ai; are the rows of A: associated with al field vectors in the i-th processor’s

subdomain that lie on the boundary shared with the j-th domain, and Nshared is the number of
processors that share boundaries with the i-th processor. Subsequently, local to each processor,

(18) is actually performed as

= =int Nosarea ==shared Noraa ==shared
Aix; = Ai x;+ Z (Ai,j x,.)+ 2 R,(Aj.i xj) (20)
j=1 j=1

where Rx is the receive operator, receiving the vector of data fromthe jth processor. The first

two expressions on the rj ght’é‘handiside of (20) are done completely in parallel on each processor,

Parallel PGY-Algorithm, S. Gedney & F. Lansing

and the final term requires interprocessor communication. Since the RIP and the Greedy
algorithms both attempt to minimize the lengths of the shared boundaries, the ratio of
computation to communication is high, leading to a highly scalable algorithm as demonstrated in
Section V.

IV. The Vector algorithm

Almost all of today’s distributed memory parallel computers utilize RISC processors as central
processing units (CPUs). Many of the RISC processors rely on vector pipelining to achieve
maximum floating point operation speeds. They also rely on,&high speed cache to reduce memory
access time. As a result, to optimize the processor floating point operation speeds, dominant
computational tasks must be vectorized. Vectorization is realized on the innermost loops of any
multi-dimensional loop structure and can be achieved in an optima manner when: 1) the inner
loops are truly vector operations and are not corrupted by function calls, logical statements, or
indirect addressing, 2) the inner-most column index of Inulti-dimensions] arrays corresponds to
the index of the inner loop, 3) the length of the inner loop is equal to or greater than the optimal
vector length (typically determined by the vector length of a vector processor, or the cache size
of a pipelined or a super-scalar processor).

The matrices in (11)-(16) are assumed to be stored in a compressed format, namely, only the
non-zero entries are actually stored and pointers are used to identify the row and column number
of each entry. Thus, the matrix vector product performed in (20) is performed using indirect
addressing, i.e., the effective index of the vector x is determined by either a pointer, or an integer
array, and x is addressed in a random fashion. As a result, poor floating point operation will
result when performing the linear operations in (20) on RISC processors that have architectures
employing either vector units, pipelined floating point units, or even superscalar floating point
pipelined units. This appears to be predominately due to the inability to stream the vectors into

the local high-speed cache, and subsequently through the floating-point control unit.

12

Parallel PGY-Algorithm, S Gedney & F. Lansing

Vectorization can be achieved, by exploiting the regular ity of the sparse update matrices along
the vertical direction. Specifically, the operations dependent on the discrete index k correspond-
ing to the vertical z-direction can be placed on the inner loop of the matrix-vector product
operation. As a result, the indirectly addressed variables become constants within the inner loop,
and are addressed only in the outer loop. This leads to a very efficient operation that has
increased floating point speeds on a RISC processor. As an example, Fig. 3 illustrates the
FORTRAN loop that is used to perform the update of the interior vertical electric-field
intensities, specifically from (14). It is assumed that the. secondary grid cells in the transverse
plane are arbitrary polygons, and each row has a random number of non-zero elements. To this
end, the pointer iez points to the first non-zero entry of the i-th row in the vectors aez and jez , jez
is the column indices of each entry of aez, and aez contains the non-zero entries of the matrix.
Also epszis the inverse of the relative permittivity local to the vertical edge. The inner loop,
loops through the vertical index k, and within this loop jez and aez are constants.

By exploiting the vectorization of the RISC processor, a substantial speedup can be achieved.
As an example, the CPU speed .vs. the vector loop lengths were measured on an Intel i860
microprocessor. The 1860 is a 64-bit RISC processor, It has a peak performance of 80 MFLOPS
(Millions of Floating Point Operations per Second) single precision and 60 MFLOPS double
precision at a40-MHz clock cycle. The i860 has a 4 Kbyte instruction cache organized as a two-
way set-associative memory with 32 bytes per cache block. It also has a separate data cache
which is a two-way set-associative memory of 8 Kbytes. There are also two floating-point units
within the processor, namely, a multiplier unit and an adder unit, which can be used separately or
simultaneously under the coordination of the floating-point control unit. This design supports
dual operation floating point instructions such as “add-and-multiply” and “subtract-and-multiply”
by using both the adder and multiplier units in parallel. Vector operations can be pipelined
through the floating point units yielding maximal performance.

The benchmarked performance of the FORTRAN loop in Fig. 3 versus the vector length nzis

illustrated in Fig, 4 (Case 1). This was performed using single precision floating-point

13

Parallel PGY-Algorithm, S. Gedney & F. Lansing

arithmetic. This is compared to the case in which the two inner loops in Fig. 3 are reversed
(Case 2). Interestingly, as nzis increased, the performance of this loop decreases. Overal, this
illustrates that loops with indirect addressing cannot take advantage of vector pipelining. Thisis
a problem that plagues many finite. element codes. An additional benchmark was performed to
vary the value of nnod (in Fig. 4 nnod = 1000). In both cases, the performance is effectively

independent of the length of nnod. These results are not illustrated here.

V. Numerical Results

A FORTRAN program based on the planar generalized Yee-algorithm has been developed on
a 32-node Intel iPSC/860 hypercube. This same program has been direct] y ported to the 512-
node Intel Delta Supercomputer, a 2-processor Cray - YMP, and an HP 720 workstation. The
program is interfaced with a commercial CAD software package (SDRC1-DEAS) running on an
HP 720 workstation. The CAD software is used to design and build the circuit models. It is also
used to generate the two-dimensional unstructured mesh via automatic grid generation
techniques. The node-based two-dimensional mesh is subsequently partitioned on the
workstation using either the Greedy or the RIP algorithms. Since the generation of the meshes of
very large models canbe extremely time-consuming and memory intensive, an automatic mesh
refinement technique has been implemented within the parallel algorithm. The refinement is
done in a fairly trivial manner, as illustrated in Fig. 5, and can be done completely in parallel.
Furthermore, since it is a global refinement, a mesh partitioning does not need to be repeated.

A second-order absorbing boundary condition (ABC) known as the dispersive boundary
condition {13] is used to update the fields on truncation boundary walls, minimizing any
nonphysical reflections. To maintain the second-order accuracy of the boundary condition, the
two-dimensional mesh is padded with two layers of rectangular cells (this is done prior to the
partitioning to maintain load balance of the parallel algorithm).

A number of numerical simulations have been run to validate the code and to demonstrate its
robustness [9]. As an example, consider a circular cylindrical via through a ground plane, as

illustrated in Fig. 6. The via connects two 50 €2 microstrip lines using a cylindrical post passing

Parallel PGY-Algorithm, S, Gedney & F. Lansing

through acircular hole in aground plane. ‘I he two-dimensional mesh representing this geometry
isillustrated in Fig. 7. The mesh models the three-dimensional geometry asiit is projected onto a
two-dimensional plane. Since there are conductors and dielectrics at different heights in the
three-dimensional model, each cell is assigned a material identification number.
Correspondingly, a table is built which identifies the discrete heights, thickness and properties of
conductor strips and material slabs.

Both the RIP algorithm [11] and the Greedy algorithm [12] were used to perform the spatial
decomposition of the mesh, As described in Section 111, the Greedy algorithm provides a better
load balance, while the RIP agorithm better minimizes the lengths of the shared boundaries.
Figures 8 and 9 illustrate the spatial decomposition of the two-dimensional quadrilateral mesh
illustrated in Fig. 7 into 32 subdomains using the RIP and Greedy algorithms, respectively. A
means of comparing the load balancing of the two algorithms, is to compare the maximum
number of cells and nodes in a subdomain to the minimum number. This is illustrated in
Table 1. It is seen that the Greedy algorithm yields much more optimal load balancing overall.
However, the number of edges on shared boundaries are greater in the mesh decomposed by the
Greedy agorithm than that decomposed by the RIP algorithm. In fact, observing Fig. 9, it is
seen that one of the subdomains is even@isjoint, e.g., it is bound by more than one closed
surface. Initially, there is some uncertainty as to whether the optimal load balance will result in a
more efficient decomposition, Or the minimized shared boundary lengths.

The via was analyzed on a 32-node iPSC/860. Each node of the iPSC/860 hosts a 40 MHz
1860 RISC processor and 16 Mb of memory. The two-dimensional mesh in Fig. 7 was used, and
consists of 4867 quadrilateral cells. The three-dimensional mesh was 40 cells high along the
vertical direction. The full simulation required 4000 time iterations. The CPU times required to
perform the simulation versus the number of processors are illustrated in Table 2, comparing the
times that resulted from using the RIP and the Greedy algorithms. Clearly, the Greedy algorithm

results in improved CPU times. Figure 10 illustrates the speedups of the parallel algorithm,

&
1

again based on the RIP and Greedy decomposijtions. “I’he speedup here is defined as being the
\

15

%‘/ '

Y

Parallel PGY-Algorithm, S Gedney & F. Lansing

ratio of the CPU time required to execute the problem on 7 processors to that required by a
single processor. Thisis aso compared to the ideal case of alinear spcedup. Excellent speedups
are observed over the 32 processors. Finaly, the magnitude of the S-parameters are illustrated in
Fig. 11. These results are compared with [he measured results presented in [81 and those

computed using an orthogonal grid TLM method {Eswarappa, 1994 #891.

VI. Summary

In this paper, the parallel planar generalized Y ee (PGY") algorithm was presented. Initialy, it
was shown that by exploiting the planar symmetries of printed microwave circuit devices, great
savings in both CPU time and memory can be. achieved. It was also shown that significant
speedups in floating point operation speeds can be achieved by exploiting inherent vectorism in
the PGY algorithm due to the regularity of the grid along one dimension.

The paralel PGY algorithm presented was based on a spatial decomposition of the general
unstructured mesh. By treating the update matrices as subassemblies of matrices, a very efficient
parallel scheme was obtained. Two spatial decompositions were compared, the recursive inertia
partitioning (RIP) algorithm and the Greedy algorithm. The Greedy algorithm provides optimal
load balance, whereas the RIP algorithm more effectively minimizes shared boundary interface
lengths. Through a numerical example, it was demonstrated that the Greedy algorithm provides
superior speedups. From this, it can be concluded that load balancing is extremely important,
and will lead to scalable parallel algorithms. Finally, it is demonstrated that the parallel PGY
algorithm has a high level of parallel efficiency and provides the means to efficiently and

accurately solve practical engineering problems.

References

[1] S. Gedney, F. Lansing and D. Rascoe, “A generalized Y et-algorithm for the analysis of
MMIC devices,” |[EEE Transactions on Microwave Theory and Techniques, vol. submitted
for review, pp. “1993.

[2] S. Gedney and F. Lansing, "Full wave analysis of printed microstrip devices using a

generalized Yee-algorithm,” in /EEE Antennas and Propagation Symposium Digest. Ann
Arbor, MI: 1993.

16

Parallel PGY-Algorithm, S. Gedney & F. Lansing 17

[3]

[4]

[6]

18.

9]

[10]

(11}

[12]

[13]

N. Madsen, “Divergence preserving discrete surface integral methods for Maxwell’s
eguations using nonorthogonal unstructured grids, ” UCRL-JC- 109787, Technica Report,
LI.NL., February 1992.

A. Taflove and K. Umashankar, “Finite-difference time-domain (}*D11) modeling of
electromagnetic wave scattering and interaction pro blems,” JELE A ntennas and
Propagation Magazine, vol. 30, pp. 5-20, April 1988.

J.-F. Lee, R. Palendech and R. Mittra, "Modeling three-dimensional discontinuities in
waveguides using nonorothogonal FDTD algorithm, ” |EEE Transactions on Microwave
Theory and Techniques, vol. 40, pp. 346-352, February 1992.

J. F. Lee, “Finite difference time domain algorithm for non-orthogonal grids and its
application to the solution of electromagnetic scattering problems,” Archiv fur Elektronik
und Uebertragungstechnik, vol. 46, pp. 328-335, No. 51992.

P. Harms, J.-F. Lee and R. Mittra, “A study of the non orthogonal FIDTD method versus the
conventional FDTD technique for computing resonant frequencies of cylindrical cavities,”
IEEE Transactions on Microwave Theory and Techniques, vol. 40, pp. 741-746, April

1992.

P. Harms, J.-F. Lee and R. Mittra, “ Characterizing the cylindrical via discontinuity,” IEEE
Transactions on Microwave Theory and Techniques, vol. 41, pp. 153-156, January 1993.

S. Gedney and F. Lansing, “A Generalized Yee-Algorithm For the Analysis of Three-
Dimensional Microwave Circuit Devices with Planar Symmetry,” JEEE Transactions on
Microwave Theory and Techniques, vol. pp. submitted for review 1994.

S. Gedney, “Finite-Difference Time-Domain Anal ysis of Microwave Circuit Devices on
High Performance Vector/Parallel Computers,” /EEE Transactions on Microwave Theory
and Techniques, vol. pp. submitted for review 1994.

B. Nour-Omid, A. Raefsky and G. Lyzenga, “ Solving finite element equations on
concurrent computers,” in Symposium on Parallel Computation and their /mpact on
Mechanics. Boston: 1987.

C. Farhat and M. Lesoinne, "Automatic partitioning of unstructured meshes for the parallel
solution of problems in computational mechanics,” International Journal on Numerical
Methods in Engineering, vol. 36, pp. 745-764, 1993.

V. Betz and R. Mittra, “Comparison and evaluation of boundary conditions for the
absorption of guided wavesin an FDTD simulation,” |EEE Microwave and Guided Wave
Letters, vol. 2, pp. 499-401, December 1992.

18

Parallel PGY-Algorithm, S Gedney& F. Lansing. — — — — 7

<
P
N

—

oo
{Z 2—*3)

N
MM
IVNNN,

Fig. 1 An example of the primary grid described by similar two-din] ensional unstructured grids

cascated in the vertical z-direction in aregular sense.

Parallel PGY-Algorithm, S. Gedney & F. Lansing. __

Fig. 2 Normal to atransverse primary face, and a dual edge passing through the face.

19

Parallel PGY-Algorithm, S Gedney & F. Lansing

do 10i = 1,nnod
do 10] = iez(i)iez(i+1)-1
11 = Jjez(j)
aj = aez(j)*codt
do10k=1nz-1
ez(k,i) = ez(k,i) aj*hi(k jl*epsz(k,i)
10 continue

Fig.3 FORTRAN loop performing the update of the vertical electric field using (14).

20

Parallel pGY-Algorithm, S Gedney 2 F_ | ansing _ "

MFLOSS

0 .i.i.i.j.i;i.i.i__.i,n.1.1,1.1

0 30 60 90 120 150

Fig. 4 MFELOPS .vs. number of cellsin the vertical direction recorded on a single 40 MHz.

i860 RISC processor. Case 1 refer’sto the loop in Fig. 2, and Case 2 is the same update
with the two inner loops switched.

21

Paralld pGY-Algorithm, S.Gedney £ E Lansing— — —"

Fig. 5

3
::)'&
1
4 2
— 3 47
3
]) g }
6
\2 1 4)

Refinement of Triangular and quadrilateral elements.

22

Fig. 6

39mm

0.7 mm
Geometry of acylindrical viathrough # PEC ground planc.

1.6 mm

1.6 mm

Parallel PGY-Algorithm, S Gedney & FiLansing —— —— —---

Fig. 7 Two-dimensional mesh representing the cylindrical via

24

Parallel PGY-Algorithm,S Gedney & F. lansing_ __ __ __

£
i
H 13
E.
5{ :
Tt
o
3N
¥ - N
<k %J H
’§ <t EHIRY
e Ft-4 34
Lo
5T 311§
34!
2t153ss
2 ebfilsiacd
. . 35383355
ik
’ 1: $ s
/ i

Fig. 8 Spatial decomposition of the two-dimensional mesh using the RIP algorithm (32 sub
domains).

26

Parallel PGY-Algorithm, S. Coduoy © T 1 nucive

1s

444

dimensional mesh using the Greedy algorithm (32

Spatial decomposition of the two

sub domains).

Fig. 9

Parallel PGY-Algorithm, S. Gedney & F. Lansing

27

Speedup

Fig. 10

——Cr== RIP
-—{+— Greedy
— ©- - Linear Speedu|

1.5 3 2) e 22

PR

20 24 28 32

Speedup of the parallel PGY algorithm over 32 processors of an iPSC/860 using the
RIP and the Greedy spatial decomposition methods.

Parallel PGY-Algorithm, S Gedney & F. Lansing

0 — . - — —
ft/ﬁt-j-v
-5 -
]
- _|o e .
m -
=]
. A5 | g R s]
< N]
-20 S R S]
- & - Measurec
-25
09 20

Fig.11 Magnitude of the S-parameters for the cylindrical viathrough a ground plane computed

using the planar generalized Yec-algorithm.

28

Parallel PGY-Algorithm, S Gedney & FF. Lansing

I.oad Balance of the RIP and Greedy Algorithms

Table 1.

29

RIP Greed y
P Ncmax ’ NC mn Nnmax: - N"mim NCmal : Ncmm Nnmax) nmin
| 4867:4867 49884083 4867 : 4867 4988:4988
) 2542:2325 26292004 || 2434:2433 2541:2541
4 1353:1142 14t211.: 1210 1217:1216 “ 1313:1289
8 661:571 T43-62 609:608 670:662
16 374:284 421 :392 319289 ° 384:341
37 203 : 131 236151 153: 151 190:177
Table 2.

CPU Times Recorded .vs. # of Processors (P) on iPSC/860
for the Microstrip Via (4000 time iterations)

P RIP __Greedy
, 7936.0 7936.()
, 472240 AT
A ' 2406.0 2219.0
s 1301.0 1960
16 815.00 769.00
32 3 520.00 384.00

